Source code for ssp.ml.metrics

#!/usr/bin/env python

__author__ = "Mageswaran Dhandapani"
__copyright__ = "Copyright 2020, The Spark Structured Playground Project"
__credits__ = []
__license__ = "Apache License"
__version__ = "2.0"
__maintainer__ = "Mageswaran Dhandapani"
__email__ = "mageswaran1989@gmail.com"
__status__ = "Education Purpose"

from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score



# function to print out classification model report
[docs]def classification_report(model_name, test, pred): print(model_name, ":\n") print("Accuracy Score: ", '{:,.3f}'.format(float(accuracy_score(test, pred)) * 100), "%") print(" Precision: ", '{:,.3f}'.format(float(precision_score(test, pred, average='micro')) * 100), "%") print(" Recall: ", '{:,.3f}'.format(float(recall_score(test, pred, average='micro')) * 100), "%") print(" F1 score: ", '{:,.3f}'.format(float(f1_score(test, pred, average='micro')) * 100), "%")